KERAS and MNIST#

import matplotlib.pyplot as plt
import numpy as np

We’ll apply the ideas we just learned to a neural network that does character recognition using the MNIST database. This is a set of handwritten digits (0–9) represented as a 28×28 pixel grayscale image.

There are 2 datasets, the training set with 60,000 images and the test set with 10,000 images.

import keras
2025-12-02 18:29:11.641640: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.
2025-12-02 18:29:11.687208: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2025-12-02 18:29:13.083961: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:31] Could not find cuda drivers on your machine, GPU will not be used.

Important

Keras requires a backend, which can be tensorflow, pytorch, or jax.

By default, it will assume tensorflow.

This notebook has been tested with both pytorch and tensorflow.

Tip

To have keras use pytorch, set the environment variable KERAS_BACKEND as:

export KERAS_BACKEND="torch"

We follow the example for setting up the network: Vict0rSch/deep_learning

Note

For visualization of the network, you need to have pydot installed.

The MNIST data#

The keras library can download the MNIST data directly and provides a function to give us both the training and test images and the corresponding digits. This is already in a format that Keras wants, so we don’t use the classes that we defined earlier.

from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
       0/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0s/step

  196608/11490434 ━━━━━━━━━━━━━━━━━━━━ 3s 0us/step

  475136/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

  737280/11490434 ━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 1048576/11490434 ━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 1310720/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 1589248/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 1769472/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 2064384/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 2326528/11490434 ━━━━━━━━━━━━━━━━━━━━ 2s 0us/step

 2555904/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 2752512/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 3014656/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 3162112/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 3358720/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 3604480/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 3866624/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 4112384/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 4407296/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 4685824/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 4915200/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 5128192/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 5406720/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 5701632/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 5914624/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 6144000/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 6406144/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 6619136/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 6848512/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 7077888/11490434 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

 7307264/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 7602176/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 7864320/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 8060928/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 8290304/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 8552448/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 8830976/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 9125888/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 9306112/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 9519104/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 9814016/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

10059776/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

10321920/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

10584064/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

10862592/11490434 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

11108352/11490434 ━━━━━━━━━━━━━━━━━━━ 0s 0us/step

11419648/11490434 ━━━━━━━━━━━━━━━━━━━ 0s 0us/step

11490434/11490434 ━━━━━━━━━━━━━━━━━━━━ 3s 0us/step

As before, the training set consists of 60000 digits represented as a 28x28 array (there are no color channels, so this is grayscale data). They are also integer data.

X_train.shape
(60000, 28, 28)
X_train.dtype
dtype('uint8')

Let’s look at the first digit and the “y” value (target) associated with it—that’s the correct answer.

plt.imshow(X_train[0], cmap="gray_r")
print(y_train[0])
5
../_images/b1b594ffb3b5899e56921398e95efa2b7eecccf1246ee5011ead51a3ce56c917.png

Preparing the Data#

The neural network takes a 1-d vector of input and will return a 1-d vector of output. We need to convert our data to this form.

We’ll scale the image data to fall in [0, 1) and the numerical output to be categorized as an array. Finally, we need the input data to be one-dimensional, so we fill flatten the 28x28 images into a single 784 vector.

X_train = X_train.astype('float32')/255
X_test = X_test.astype('float32')/255

X_train = np.reshape(X_train, (60000, 784))
X_test = np.reshape(X_test, (10000, 784))
X_train[0]
array([0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.01176471, 0.07058824, 0.07058824,
       0.07058824, 0.49411765, 0.53333336, 0.6862745 , 0.10196079,
       0.6509804 , 1.        , 0.96862745, 0.49803922, 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.11764706, 0.14117648, 0.36862746, 0.6039216 ,
       0.6666667 , 0.99215686, 0.99215686, 0.99215686, 0.99215686,
       0.99215686, 0.88235295, 0.6745098 , 0.99215686, 0.9490196 ,
       0.7647059 , 0.2509804 , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.19215687, 0.93333334,
       0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686,
       0.99215686, 0.99215686, 0.99215686, 0.9843137 , 0.3647059 ,
       0.32156864, 0.32156864, 0.21960784, 0.15294118, 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.07058824, 0.85882354, 0.99215686, 0.99215686,
       0.99215686, 0.99215686, 0.99215686, 0.7764706 , 0.7137255 ,
       0.96862745, 0.94509804, 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.3137255 , 0.6117647 , 0.41960785, 0.99215686, 0.99215686,
       0.8039216 , 0.04313726, 0.        , 0.16862746, 0.6039216 ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.05490196,
       0.00392157, 0.6039216 , 0.99215686, 0.3529412 , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.54509807,
       0.99215686, 0.74509805, 0.00784314, 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.04313726, 0.74509805, 0.99215686,
       0.27450982, 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.13725491, 0.94509804, 0.88235295, 0.627451  ,
       0.42352942, 0.00392157, 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.31764707, 0.9411765 , 0.99215686, 0.99215686, 0.46666667,
       0.09803922, 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.1764706 ,
       0.7294118 , 0.99215686, 0.99215686, 0.5882353 , 0.10588235,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.0627451 , 0.3647059 ,
       0.9882353 , 0.99215686, 0.73333335, 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.9764706 , 0.99215686,
       0.9764706 , 0.2509804 , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.18039216, 0.50980395,
       0.7176471 , 0.99215686, 0.99215686, 0.8117647 , 0.00784314,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.15294118,
       0.5803922 , 0.8980392 , 0.99215686, 0.99215686, 0.99215686,
       0.98039216, 0.7137255 , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.09411765, 0.44705883, 0.8666667 , 0.99215686, 0.99215686,
       0.99215686, 0.99215686, 0.7882353 , 0.30588236, 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.09019608, 0.25882354, 0.8352941 , 0.99215686,
       0.99215686, 0.99215686, 0.99215686, 0.7764706 , 0.31764707,
       0.00784314, 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.07058824, 0.67058825, 0.85882354,
       0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.7647059 ,
       0.3137255 , 0.03529412, 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.21568628, 0.6745098 ,
       0.8862745 , 0.99215686, 0.99215686, 0.99215686, 0.99215686,
       0.95686275, 0.52156866, 0.04313726, 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.53333336, 0.99215686, 0.99215686, 0.99215686,
       0.83137256, 0.5294118 , 0.5176471 , 0.0627451 , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        , 0.        ,
       0.        , 0.        , 0.        , 0.        ], dtype=float32)

We will use categorical data. Keras includes routines to categorize data. In our case, since there are 10 possible digits, we want to put the output into 10 categories (represented by 10 neurons)

from keras.utils import to_categorical

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

Now let’s look at the target for the first training digit. We know from above that it was ‘5’. Here we see that there is a 1 in the index corresponding to 5 (remember we start counting at 0 in python).

y_train[0]
array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.])

Build the Neural Network#

Now we’ll build the neural network. We will have 2 hidden layers, and the number of neurons will look like:

784 → 500 → 300 → 10

Layers#

Let’s start by setting up the layers. For each layer, we tell keras the number of output neurons. It infers the number of inputs from the previous layer (with the exception of the input layer, where we need to tell it what to expect as input).

Properties on the layers:

from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Input

model = Sequential()
model.add(Input(shape=(784,)))
model.add(Dense(500, activation="relu"))
model.add(Dropout(0.4))
model.add(Dense(300, activation="relu"))
model.add(Dropout(0.4))
model.add(Dense(10, activation="softmax"))
2025-12-02 18:29:16.800024: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)

Loss function#

We need to specify what we want to optimize and how we are going to do it.

Recall: the loss (or cost) function measures how well our predictions match the expected target. Previously we were using the sum of the squares of the error.

For categorical data, like we have, the “cross-entropy” metric is often used. See here for an explanation: https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/

Optimizer#

We also need to specify an optimizer. This could be gradient descent, as we used before. Here’s a list of the optimizers supoprted by keras: https://keras.io/api/optimizers/ We’ll use RMPprop, which builds off of gradient descent and includes some momentum.

Finally, we need to specify a metric that is evaluated during training and testing. We’ll use "accuracy" here. This means that we’ll see the accuracy of our model reported as we are training and testing.

More details on these options is here: https://keras.io/api/models/model/

from keras.optimizers import RMSprop

rms = RMSprop()
model.compile(loss='categorical_crossentropy',
              optimizer=rms, metrics=['accuracy'])

Network summary#

Let’s take a look at the network:

model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ dense (Dense)                   │ (None, 500)            │       392,500 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout)               │ (None, 500)            │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 300)            │       150,300 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout_1 (Dropout)             │ (None, 300)            │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 10)             │         3,010 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 545,810 (2.08 MB)
 Trainable params: 545,810 (2.08 MB)
 Non-trainable params: 0 (0.00 B)

We see that there are > 500k parameters that we will be training

Train#

For training, we pass in the inputs and target and the number of epochs to run and it will optimize the network by adjusting the weights between the nodes in the layers.

The number of epochs is the number of times the entire data set is passed forward and backward through the network. The batch size is the number of training pairs you pass through the network at a given time. You update the parameter in your model (the weights) once for each batch. This makes things more efficient and less noisy.

epochs = 20
batch_size = 256
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size,
          validation_data=(X_test, y_test), verbose=2)
Epoch 1/20
235/235 - 2s - 11ms/step - accuracy: 0.8860 - loss: 0.3759 - val_accuracy: 0.9565 - val_loss: 0.1425
Epoch 2/20
235/235 - 2s - 8ms/step - accuracy: 0.9514 - loss: 0.1616 - val_accuracy: 0.9674 - val_loss: 0.0994
Epoch 3/20
235/235 - 2s - 8ms/step - accuracy: 0.9643 - loss: 0.1192 - val_accuracy: 0.9676 - val_loss: 0.1014
Epoch 4/20
235/235 - 2s - 8ms/step - accuracy: 0.9704 - loss: 0.0978 - val_accuracy: 0.9772 - val_loss: 0.0761
Epoch 5/20
235/235 - 2s - 8ms/step - accuracy: 0.9752 - loss: 0.0811 - val_accuracy: 0.9793 - val_loss: 0.0672
Epoch 6/20
235/235 - 2s - 8ms/step - accuracy: 0.9784 - loss: 0.0704 - val_accuracy: 0.9792 - val_loss: 0.0686
Epoch 7/20
235/235 - 2s - 8ms/step - accuracy: 0.9804 - loss: 0.0644 - val_accuracy: 0.9816 - val_loss: 0.0627
Epoch 8/20
235/235 - 2s - 8ms/step - accuracy: 0.9820 - loss: 0.0581 - val_accuracy: 0.9813 - val_loss: 0.0646
Epoch 9/20
235/235 - 2s - 8ms/step - accuracy: 0.9837 - loss: 0.0528 - val_accuracy: 0.9806 - val_loss: 0.0702
Epoch 10/20
235/235 - 2s - 7ms/step - accuracy: 0.9842 - loss: 0.0492 - val_accuracy: 0.9829 - val_loss: 0.0632
Epoch 11/20
235/235 - 2s - 7ms/step - accuracy: 0.9849 - loss: 0.0473 - val_accuracy: 0.9836 - val_loss: 0.0586
Epoch 12/20
235/235 - 2s - 8ms/step - accuracy: 0.9866 - loss: 0.0406 - val_accuracy: 0.9842 - val_loss: 0.0588
Epoch 13/20
235/235 - 2s - 8ms/step - accuracy: 0.9871 - loss: 0.0403 - val_accuracy: 0.9833 - val_loss: 0.0626
Epoch 14/20
235/235 - 2s - 8ms/step - accuracy: 0.9876 - loss: 0.0358 - val_accuracy: 0.9843 - val_loss: 0.0628
Epoch 15/20
235/235 - 2s - 8ms/step - accuracy: 0.9889 - loss: 0.0339 - val_accuracy: 0.9847 - val_loss: 0.0612
Epoch 16/20
235/235 - 2s - 8ms/step - accuracy: 0.9895 - loss: 0.0324 - val_accuracy: 0.9835 - val_loss: 0.0624
Epoch 17/20
235/235 - 2s - 8ms/step - accuracy: 0.9891 - loss: 0.0337 - val_accuracy: 0.9843 - val_loss: 0.0629
Epoch 18/20
235/235 - 2s - 7ms/step - accuracy: 0.9902 - loss: 0.0319 - val_accuracy: 0.9849 - val_loss: 0.0630
Epoch 19/20
235/235 - 2s - 7ms/step - accuracy: 0.9910 - loss: 0.0280 - val_accuracy: 0.9836 - val_loss: 0.0667
Epoch 20/20
235/235 - 2s - 8ms/step - accuracy: 0.9909 - loss: 0.0279 - val_accuracy: 0.9848 - val_loss: 0.0651
<keras.src.callbacks.history.History at 0x7f313502e900>

Test#

keras has a routine, evaluate() that can take the inputs and targets of a test data set and return the loss value and accuracy (or other defined metrics) on this data.

Here we see we are > 98% accurate on the test data—this is the data that the model has never seen before (and was not trained with).

loss_value, accuracy = model.evaluate(X_test, y_test, batch_size=16)
print(accuracy)
  1/625 ━━━━━━━━━━━━━━━━━━━━ 8s 13ms/step - accuracy: 1.0000 - loss: 0.0362

 47/625 ━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9887 - loss: 0.0429 

 93/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9850 - loss: 0.0608

139/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9827 - loss: 0.0721

185/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9815 - loss: 0.0768

231/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9811 - loss: 0.0795

277/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9808 - loss: 0.0820

323/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9806 - loss: 0.0834

369/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9807 - loss: 0.0836

416/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9809 - loss: 0.0834

462/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9810 - loss: 0.0829

508/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9813 - loss: 0.0819

554/625 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9816 - loss: 0.0807

600/625 ━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.9818 - loss: 0.0794

625/625 ━━━━━━━━━━━━━━━━━━━━ 1s 1ms/step - accuracy: 0.9848 - loss: 0.0651
0.9847999811172485

Predicting#

Suppose we simply want to ask our neural network to predict the target for an input. We can use the predict() method to return the category array with the predictions. We can then use np.argmax() to select the most probable.

np.argmax(model.predict(np.array([X_test[0]])))
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 31ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 41ms/step
np.int64(7)
y_test[0]
array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.])

Now let’s loop over the test set and print out what we predict vs. the true answer for those we get wrong. We can also plot the image of the digit.

wrong = 0
max_wrong = 10

for n, (x, y) in enumerate(zip(X_test, y_test)):
    try:
        res = model.predict(np.array([x]), verbose=0)
        if np.argmax(res) != np.argmax(y):
            print(f"test {n}: prediction = {np.argmax(res)}, truth is {np.argmax(y)}")
            plt.imshow(x.reshape(28, 28), cmap="gray_r")
            plt.show()
            wrong += 1
            if (wrong > max_wrong-1):
                break
    except KeyboardInterrupt:
        print("stopping")
        break
test 115: prediction = 9, truth is 4
../_images/4588239e1102b91ed717bc0dc91aa7246b9e38179f00c4e9670a1260c05e81b7.png
test 149: prediction = 3, truth is 2
../_images/eabb0153bc83098fb8041c1ae752fb676e621e55282f8850702bc24ae8a4bd87.png
test 247: prediction = 6, truth is 4
../_images/2d73ed8bfef457561dfc35853fefd23f4ac9675c1904d9e7119fa2df891c362a.png
test 321: prediction = 7, truth is 2
../_images/ab24a80bc332de3f9d484913608c5c79c685b56f85710f6a8766c7651b2fa964.png
test 340: prediction = 3, truth is 5
../_images/dcc80fa519cd9212e9b6c675b3221d0f6046a0b139d2bd8cf0138a41fe65683d.png
test 445: prediction = 0, truth is 6
../_images/69f21617519b737cf7d81794fbf6d64fec4dcabdeef944931f612cbd1c3f805f.png
test 447: prediction = 9, truth is 4
../_images/0fa2dd72ae89d2eee58ffbe4ced9d947475848ea7707ea401580fd4a1cb4af3b.png
test 495: prediction = 2, truth is 8
../_images/b8dd4058e6fc8306aa9986e6db3a9adc9d2a3d15162bfe93354366da4a2a6b3f.png
test 582: prediction = 2, truth is 8
../_images/ce23f5f74c7a6f43e9dd073cee1edc2ceb2e95c63e56b8553a186afa01e9e5a2.png
test 619: prediction = 8, truth is 1
../_images/954028bdc7060367e13930288599892f6fbc997e24c678f41f4d684ee5c271ed.png

Experimenting#

There are a number of things we can play with to see how the network performance changes:

  • batch size

  • adding or removing hidden layers

  • changing the dropout

  • changing the activation function

Callbacks#

Keras allows for callbacks each epoch to store some information. These can allow you to, for example, plot of the accuracy vs. epoch by adding a callback. Take a look here for some inspiration:

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History

Going Further#

Convolutional neural networks are often used for image recognition, especially with larger images. They use filter to try to recognize patterns in portions of images (A tile). See this for a keras example:

https://www.tensorflow.org/tutorials/images/cnn